185 research outputs found

    Whey Ultrafiltration Permeate Products as Feeds for Steers

    Get PDF
    A field trial experiment was conducted using 50 steers t o evaluate the feeding value of the ultrafiltrated permeate of whey (UFP) and products made from additional processing of UFP. All steers were fed nutritionally balanced grain mixes and hay. Experimental diets were control (C), in which the grain mix contained primarily corn, oats and soybean meal; UFP fed as the only liquid; partially fermented permeate (PFP), which contained 10% dried yeast added to the ultrafiltrated permeate, fed as the only source of liquid; fermented ammoniated condensed permeate (FACP), which replaced soybean meal in the grain mix; and ammolac (AMM), FACP plus vitamins and minerals. Steers fed C, FACP and AMM diets had free choice access to water. The liquid UFP and PFP were readily consumed by steers and supplied 4.8 l b of dry matter which replaced 5.3 l b of grain. Weight gains, total feed dry matter consumption and feed dry matter per weight gain were similar for steers fed all five diets , indicating that all four of these whey products were utilized as well as more traditional feeds. The quality of carcasses from steers fed the whey products were at least as good as and possibly better than from steers fed the control diet. The feeding of UFP or PFP would likely be the most economical alternative for feeding ultrafiltrated permeate of whey. However, some concentrating of the permeate to increase the solids content from the present 5.0 to 5.5% solids to greater than 10% solids may allow UPF or PFP to replace even more grain

    Applications of error-control coding

    Full text link

    Unit bar architecture in a highly‐variable fluvial discharge regime: Examples from the Burdekin River, Australia

    Get PDF
    Unit bars are relatively large bedforms that develop in rivers over a wide range of climatic regimes. Unit bars formed within the highly-variable discharge Burdekin River in Queensland, Australia, were examined over three field campaigns between 2015 and 2017. These bars had complex internal structures, dominated by co-sets of cross-stratified and planar-stratified sets. The cross-stratified sets tended to down-climb. The development of complex internal structures was primarily a result of three processes: (i) superimposed bedforms reworking the unit bar avalanche face; (ii) variable discharge triggering reactivation surfaces; and (iii) changes in bar growth direction induced by stage change. Internal structures varied along the length and across the width of unit bars. For the former, down-climbing cross-stratified sets tended to pass into single planar cross-stratified deposits at the downstream end of emergent bars; such variation related to changes in fluvial conditions whilst bars were active. A hierarchy of six categories of fluvial unsteadiness is proposed, with these discussed in relation to their effects on unit bar (and dune) internal structure. Across-deposit variation was caused by changes in superimposed bedform and bar character along bar crests; such changes related to the three-dimensionality of the channel and bar geometry when bars were active. Variation in internal structure is likely to be more pronounced in unit bar deposits than in smaller bedform (for example, dune) deposits formed in the same river. This is because smaller bedforms are more easily washed out or modified by changing discharge conditions and their smaller dimensions restrict the variation in flow conditions that occur over their width. In regimes where unit bar deposits are well-preserved, their architectural variability is a potential aid to their identification. This complex architecture also allows greater resolution in interpreting the conditions before and during bar initiation and development

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Elliptic and Hyperelliptic Curves: A Practical Security Analysis

    Get PDF
    Motivated by the advantages of using elliptic curves for discrete logarithm-based public-key cryptography, there is an active research area investigating the potential of using hyperelliptic curves of genus 2. For both types of curves, the best known algorithms to solve the discrete logarithm problem are generic attacks such as Pollard rho, for which it is well-known that the algorithm can be sped up when the target curve comes equipped with an efficiently computable automorphism. In this paper we incorporate all of the known optimizations (including those relating to the automorphism group) in order to perform a systematic security assessment of two elliptic curves and two hyperelliptic curves of genus 2. We use our software framework to give concrete estimates on the number of core years required to solve the discrete logarithm problem on four curves that target the 128-bit security level: on the standardized NIST CurveP-256, on a popular curve from the Barreto-Naehrig family, and on their respective analogues in genus 2. © 2014 Springer-Verlag Berlin Heidelberg

    Genotoxic effect induced by hydrogen peroxide in human hepatoma cells using comet assay

    Get PDF
    Background: Hydrogen peroxide is a common reactive oxygen intermediate generated by variousforms of oxidative stress. Aims: The aim of this study was to investigate the DNA damage capacity ofH2O2 in HepG2 cells. Methods: Cells were treated with H2O2 at concentrations of 25 μM or 50 μM for5 min, 30 min, 40 min, 1 h or 24 h in parallel. The extent of DNA damage was assessed by the cometassay. Results: Compared to the control, DNA damage by 25 μM and 50 μM H2O2 increasedsignificantly with increasing incubation time up to 1 h, but it was not increased at 24 h. Conclusions:Our Findings confirm that H2O2 is a typical DNA damage inducing agent and thus is a good modelsystem to study the effects of oxidative stress. DNA damage in HepG2 cells increased significantlywith H2O2 concentration and time of incubation but later decreased likely due to DNA repairmechanisms and antioxidant enzyme

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    Experimental progress in positronium laser physics

    Get PDF

    Thermodynamic Properties of Methanol in the Critical and Supercritical Regions

    Full text link
    corecore